Diagnostika: Skirtumas tarp puslapio versijų

Iš Aktyvios pamokos.
Pereiti į navigaciją Jump to search
(Naujas puslapis: Vitalijus Volkovas '''Diagnostics and Monitoring of Technical Systems: Methods and Application''' Kaunas, 2020 TABLE OF CONTENTS INTRODUCTION…………………………………………………………………………… 1. PROBLEMS OF RELEVANCE…………………………………………………………. 1.1. Energy and concentration of power, failures and mistakes – reasons of the potential accidents………………………………………………...)
 
No edit summary
 
(nerodoma viena tarpinė versija, sukurta 3 naudotojų)
1 eilutė: 1 eilutė:
Vitalijus Volkovas
Čia pateikiama KTU profesoriaus Vitalijaus Volkovo paruošta monografija
'''Diagnostics and Monitoring of Technical Systems:
'''Diagnostics and Monitoring of Technical Systems:'''
Methods and Application'''
''Methods and Application''
Kaunas, 2020
Kaunas, 2021


TABLE OF CONTENTS
Visą knygą atskirais skyriais pagal toliau pateiktą turinį galima atsisiųsti '''[https://ktuedu-my.sharepoint.com/:f:/g/personal/eimkarc_ktu_lt/Ev6sqUjOn5pKvByuf-ZPWssBsEGK8smv98nJADqAzs5qLg?e=owKeju čia]'''
INTRODUCTION……………………………………………………………………………
 
1. PROBLEMS OF RELEVANCE………………………………………………………….
Autorius dirbo KTU Mechanikos fakulteto Mechanikos inžinerijos '''[https://midf.ktu.edu/mechanikos-inzinerijos-katedra/ katedroje]'''
1.1. Energy and concentration of power, failures and mistakes –
 
reasons of the potential accidents…………………………………………………….
Visuotinė lietuvių enciklopedija apie '''[https://www.vle.lt/straipsnis/vitalijus-volkovas/ autorių]'''
1.2. Industrial facilities and product safety, quality requirements..................………...
 
1.3. The methodology of evaluation of system’s technical state……………...................
KTU bibliotekoje yra šios Vitalijaus Volkovo paruoštos '''[https://biblioteka.ktu.edu/galleries/volkovas/ knygos]'''
1.4. System monitoring and diagnostics symbiosis……………………………………….
 
REFERENCES…………………………………………………………………………………
Informacija anglų kalba yra čia '''[[Diagnostics]]'''
2. MODELS OF DAMAGED MECHANICAL SYSTEMS……………………………….
 
2.1. Technological system decomposition into elements and analysis  
***********************
of defective states………………………………………………………………………
'''TABLE OF CONTENTS. FOREWORD. INTRODUCTION. [https://ktuedu-my.sharepoint.com/:b:/g/personal/eimkarc_ktu_lt/Eco9LSrQe4tDrKE8d-l0RBYB3s6dYDR3uAkVK_q3Pz--7w?e=4gGqN3 Intro]'''<br>
2.2. Models of technical system structural elements…………………………………….  
'''1. PROBLEMS OF RELEVANCE. [https://ktuedu-my.sharepoint.com/:b:/g/personal/eimkarc_ktu_lt/EfHDazseMjtKrjIbbLUBSmMBB4GQYzUjdsW5eGeZMD1ZFg?e=gABDck Sec1]'''<br>
2.2.1. Linear dynamics challenges……….…………………………………………...
1.1. Energy and concentration of power, failures and mistakes – reasons of the potential accidents.<br>
2.2.2. Nonlinear dynamics challenges…………………………………………………
1.2. Industrial facilities and product safety, quality requirements.<br>
2.3. Model of damaged structure’s parameters changing…………...……………………
1.3. The methodology of evaluation of system’s technical state.<br>
REFERENCES…………………………………………………………………………………
1.4. System monitoring and diagnostics symbiosis.<br>
3. DYNAMICS AND STATE IDENTIFICATION OF HETEROGENEOUS  
REFERENCES 1.<br>
SYSTEMS........................……………………………………………………………………
'''2. MODELS OF DAMAGED MECHANICAL SYSTEMS. [https://ktuedu-my.sharepoint.com/:b:/g/personal/eimkarc_ktu_lt/Ec6oS_nrp5NFvAJbFT0Irx0BRS050r_qeqSPO1fDhGfuSA?e=D6B7SL Sec2]'''<br>
3.1. Systems with lumped parameters …………………………………………………….
2.1. Technological system decomposition into elements and analysis of defective states.<br>
3.2 Systems with distributed parameters...................................................................……
2.2. Models of technical system structural elements.<br>
3.2.1. The transfer function dentification......................................................................
2.2.1. Linear dynamics challenges.<br>
3.2.2. Dynamics of oblong constructive element and defect identification................
2.2.2. Nonlinear dynamics challenges.<br>
3.2.3. Defect identification in the axis - symmetrical constructive elements.............
2.3. Model of damaged structure’s parameters changing.<br>
3.2.3.1. FEM analysis and state parameters identification……………….
REFERENCES 2.<br>
3.2.3.2. Reaction of the mechanical system to impact load and state
'''3. DYNAMICS AND STATE IDENTIFICATION OF HETEROGENEOUS SYSTEMS. [https://ktuedu-my.sharepoint.com/:b:/g/personal/eimkarc_ktu_lt/ESxj2nShbdhMns8nbF82hRoBirxOesfnJ4Nq0e6G7HP1Xg?e=MzPgIq Sec3]<br>'''
determination…………………………………………………………….
3.1. Systems with lumped parameters.<br>
3.2.4. Dynamics and identification of flexible constructive elements...........................
3.2 Systems with distributed parameters.<br>
3.2.4.1. Model of transverse oscillations of a defective belt free span
3.2.1. The transfer function identification.<br>
between pulleys..........................................................................................
3.2.2. Dynamics of oblong constructive element and defect identification.<br>
3.2.4.2. FEM analysis of the defective belt interaction with the pulley..............
3.2.3. Defect identification in the axis - symmetrical constructive elements.<br>
3.2.4.3. A method of belt drives malfunction diagnosis.......................................
3.2.3.1. FEM analysis and state parameters identification.<br>
3
3.2.3.2. Reaction of the mechanical system to impact load and state determination.<br>
3.2.4.4. Procedure of measuring..........................................................................
3.2.4. Dynamics and identification of flexible constructive elements.<br>
3.3. Damaged system’s quazi-harmonic process model..............................................
3.2.4.1. Model of transverse oscillations of a defective belt free span between pulleys.<br>
REFERENCES…………………………………………………………………………………
3.2.4.2. FEM analysis of the defective belt interaction with the pulley.<br>
4. THEORY OF MODERN DIAGNOSTIC METHODS AND MEANS……………………
3.2.4.3. A method of belt drives malfunction diagnosis.<br>
4.1. Controlled dynamic elements in structure’s diagnostics………………………………
3.2.4.4. Procedure of measuring.<br>
4.1.1. The qualitative estimation of defectness of the beam type structures……….
3.3. Damaged system’s quazi-harmonic process model.<br>
4.1.2. Experimental investigation of the technical state change and defect
REFERENCES 3.<br>
localization in beam type structures……………………………………………
'''4. THEORY OF MODERN DIAGNOSTIC METHODS AND MEANS. [https://ktuedu-my.sharepoint.com/:b:/g/personal/eimkarc_ktu_lt/ET_kKJVqltJImX5DWHlz2PABHxmgcziASukw0uZUZomWrw?e=M6zC2p Sec4]<br>'''
4.1.3. The diagnostic methods, based on the dynamics of structure with
4.1. Controlled dynamic elements in structure’s diagnostics.<br>
additional mass………………………………………………………………….
4.1.1. The qualitative estimation of defectness of the beam type structures.<br>
4.2. Inspection using mechanical energy converting elements ……………………………
4.1.2. Experimental investigation of the technical state change and defect localization in beam type structures.<br>
4.2.1. The mechanical energy conversion into electricity model………………........
4.1.3. The diagnostic methods, based on the dynamics of structure with additional mass.<br>
4.2.2. Practical aspect of application and new devices................................................
4.2. Inspection using mechanical energy converting elements.<br>
4.3. Some aspects of vibration and impact analysis in systems diagnostics........................
4.2.1. The mechanical energy conversion into electricity model.<br>
4.3.1. Evaluation of quality of heterogeneous mechanical systems
4.2.2. Practical aspect of application and new devices.<br>
using impedance method……………………………………………………….
4.3. Some aspects of vibration and impact analysis in systems diagnostics.<br>
4.4.2. Vibro shock signals in rotating system…………………………………………
4.3.1. Evaluation of quality of heterogeneous mechanical systems using impedance method.<br>
4.4.3. Simulation of vibro shock signals in rotating system………………………….
4.3.2. Vibro shock signals in rotating system<br>
4.4. Multi-layer cylindrical structures diagnostics based on
4.3.3. Simulation of vibro shock signals in rotating system.<br>
Lamb’s wave’s interference………………………………………………………….....
4.4. Multi-layer cylindrical structures diagnostics based on Lamb’s wave’s interference.<br>
4.4.1. Waves propagating within the cylindrical structure and interference
4.4.1. Waves propagating within the cylindrical structure and interference phenomenon.<br>
phenomenon……………………………………………………………………..
4.4.2. A technique of signal processing for interferometric estimation of the amount of deposit in pipes<br>
4.4.2. A technique of signal processing for interferometric estimation
4.5. Acoustic emission (AE): research and new aspects.<br>
of the amount of deposit in pipes………………………………………………..
4.5.1. AE method in the rotating machine elements.<br>
4.5. Acoustic emission (AE): research and new aspects…………………………………….
4.5.2. AE testing of pressurized vessels and cylinders.<br>
4.5.1. AE method in the rotating machine elements…………………………………..
REFERENCES 4.<br>
4.5.2. AE testing of pressurized vessels and cylinders…………………………………
'''5. DEVELOPMENT AND APPLICATION OF MONITORING AND DIAGNOSTICS. [https://ktuedu-my.sharepoint.com/:b:/g/personal/eimkarc_ktu_lt/EcLSNs9YDsFBjpevBB5b6fEBgwJEYWJGYB6NU-OXwseOxQ?e=LRscys Sec5]<br>'''
REFERENCES…………………………………………………………………………………
5.1. Permanent vibration monitoring and diagnostics of unique machines (UM).<br>
5. DEVELOPMENT AND APPLICATION OF MONITORING AND DIAGNOSTICS……
5.1.1. Vibration monitoring and diagnostic systems of turboagregate.<br>
5.1. Permanent vibration monitoring and diagnostics of unique machines (UM)…………
5.1.2. Monitoring the technical condition of hydroelectric power plants.<br>
5.1.1. Vibration monitoring and diagnostic systems of turboagregate…………………
5.1.3. Vibroacoustic diagnostics of rolling bearings using stationary system.<br>
5.1.2. Monitoring the technical condition of hydroelectric power plants………………
5.2. Periodic vibration diagnostics of rotor systems with portable devices.<br>
5.1.3. Vibroacoustic diagnostics of rolling bearings using stationary system…………
5.3. Adaptable vibration monitoring in rotor systems.<br>
5.2. Periodic vibration diagnostics of rotor systems with portable devices ……………….
5.3.1. Concept and principles of adaptive monitoring.<br>
4
5.3.2. Realization of adaptive bearing defect detection.<br>
5.3. Adaptable vibration monitoring in rotor systems ………………………………………
5.3.3. Adaptive monitoring algorithm.<br>
5.3.1. Concept and principles of adaptive monitoring………………………………….
5.4. Vibrodiagnostics problem in small hydroelectric power plants (SHPP).<br>
5.3.2. Realization of adaptive bearing defect detection…………………………
5.5. The concept of buildings stability monitoring and damage diagnostics.<br>
5.3.3. Adaptive monitoring algorithm………………………………………………
5.5.1. Concept of building’s stability.<br>
5.5. Vibrodiagnostics problem in small hydroelectric power plants (SHPP)…………..
5.5.2. Models of building and defects.<br>
5.5. The concept of buildings stability monitoring and damage diagnostics……………
5.5.3. Building’s stability monitoring system (BSMS).<br>
5.5.1. Concept of building’s stability.................................................................................
5.5.4. Results of laboratory experiment and practices.<br>
5.5.2. Models of building and defects...................................................................................
5.5.4.1. Analysis of frequencies of FE models and MA experiments.<br>
5.5.3. Building’s stability monitoring system (BSMS)..........................................................
5.5.4.2. STFT method for floor damage diagnostics.<br>
5.5.4. Results of laboratory experiment...................................................................................
5.5.4.3. Application of CWT to defect detection.<br>
5.6. Development of new measurement elements for vibration monitoring systems...............
5.5.4.4. ANN application to defect detection.<br>
5.6.1. Low frequency vibration measurement device: creation and investigation............
5.5.4.5. Practical use of building monitoring concept.<br>
5.6.2. Air gap measuring system for purpose of diagnostics and condition monitoring...
5.6. Development of new measurement elements for vibration monitoring systems.<br>
REFERENCES………………………………………………………………………………………
5.6.1. Low frequency vibration measurement device: creation and investigation.<br>
6. UNCERTAINTY IN MONITORING AND DIAGNOSTIC SYSTEMS...................................
5.6.2. Air gap measuring system for purpose of diagnostics and condition monitoring.<br>
6.1 Uncertainty in vibration monitoring systems of rotating machinery …………………….
REFERENCES 5.<br>
6.2. Uncertainty sources in vibration monitoring and diagnostic systems……………………
'''6. UNCERTAINTY IN MONITORING AND DIAGNOSTIC SYSTEMS. [https://ktuedu-my.sharepoint.com/:b:/g/personal/eimkarc_ktu_lt/ESPRaql5rJNKkHH-s9CQX3sBNhS6g60g53vVknmEPEyfyQ?e=aPGMzC Sec6]<br>'''
6.2.1. Calculating measurement uncertainty in vibromonitoring systems………………
6.1 Uncertainty in vibration monitoring systems of rotating machinery .<br>
6.2.2. Increase of mean and variance estimates reliability for limited data size……….
6.2. Uncertainty sources in vibration monitoring and diagnostic systems.<br>
6.2.2.1. Theory of the method……………………………………………………
6.2.1. Calculating measurement uncertainty in vibromonitoring systems.<br>
6.2.2.2. The results of statistical simulation……………………………………
6.2.2. Increase of mean and variance estimates reliability for limited data size.<br>
6.2.2.3. Practical application of the method……………………………………
6.2.2.1. Theory of the method.<br>
6.2.3. The measurement uncertainty with random or systematic errors………………
6.2.2.2. The results of statistical simulation.<br>
6.2.3.1. Rotating machinery as a measurement object………………………..
6.2.2.3. Practical application of the method.<br>
6.2.3.2. Vibromonitoring system as a measurement medium………………….
6.2.3. The measurement uncertainty with random or systematic errors.<br>
6.2.3.3. Analysis of experimental data…………………………………………
6.2.3.1. Rotating machinery as a measurement object.<br>
6.2.4. Uncertainty of decision making…………………………………………………….
6.2.3.2. Vibromonitoring system as a measurement medium.<br>
6.3. Investigation of vibration monitoring uncertainty including transient modes
6.2.3.3. Analysis of experimental data.<br>
of rotating systems....................................................................................................................
6.2.4. Uncertainty of decision making.<br>
REFERENCIES………………………………………………………………………………………
6.3. Investigation of vibration monitoring uncertainty including transient modes of rotating systems.<br>
REFERENCIES 6.<br>
'''CONCLUSSION. [https://ktuedu-my.sharepoint.com/:b:/g/personal/eimkarc_ktu_lt/EePDWDNtX9ZOmAzEJDlR22ABgw0g8oh2x89wJEVnsBxPfA?e=uln5DD Sec7]'''

Dabartinė 17:57, 18 balandžio 2023 versija

Čia pateikiama KTU profesoriaus Vitalijaus Volkovo paruošta monografija

Diagnostics and Monitoring of Technical Systems:
Methods and Application
Kaunas, 2021

Visą knygą atskirais skyriais pagal toliau pateiktą turinį galima atsisiųsti čia

Autorius dirbo KTU Mechanikos fakulteto Mechanikos inžinerijos katedroje

Visuotinė lietuvių enciklopedija apie autorių

KTU bibliotekoje yra šios Vitalijaus Volkovo paruoštos knygos

Informacija anglų kalba yra čia Diagnostics

TABLE OF CONTENTS. FOREWORD. INTRODUCTION. Intro
1. PROBLEMS OF RELEVANCE. Sec1
1.1. Energy and concentration of power, failures and mistakes – reasons of the potential accidents.
1.2. Industrial facilities and product safety, quality requirements.
1.3. The methodology of evaluation of system’s technical state.
1.4. System monitoring and diagnostics symbiosis.
REFERENCES 1.
2. MODELS OF DAMAGED MECHANICAL SYSTEMS. Sec2
2.1. Technological system decomposition into elements and analysis of defective states.
2.2. Models of technical system structural elements.
2.2.1. Linear dynamics challenges.
2.2.2. Nonlinear dynamics challenges.
2.3. Model of damaged structure’s parameters changing.
REFERENCES 2.
3. DYNAMICS AND STATE IDENTIFICATION OF HETEROGENEOUS SYSTEMS. Sec3
3.1. Systems with lumped parameters.
3.2 Systems with distributed parameters.
3.2.1. The transfer function identification.
3.2.2. Dynamics of oblong constructive element and defect identification.
3.2.3. Defect identification in the axis - symmetrical constructive elements.
3.2.3.1. FEM analysis and state parameters identification.
3.2.3.2. Reaction of the mechanical system to impact load and state determination.
3.2.4. Dynamics and identification of flexible constructive elements.
3.2.4.1. Model of transverse oscillations of a defective belt free span between pulleys.
3.2.4.2. FEM analysis of the defective belt interaction with the pulley.
3.2.4.3. A method of belt drives malfunction diagnosis.
3.2.4.4. Procedure of measuring.
3.3. Damaged system’s quazi-harmonic process model.
REFERENCES 3.
4. THEORY OF MODERN DIAGNOSTIC METHODS AND MEANS. Sec4
4.1. Controlled dynamic elements in structure’s diagnostics.
4.1.1. The qualitative estimation of defectness of the beam type structures.
4.1.2. Experimental investigation of the technical state change and defect localization in beam type structures.
4.1.3. The diagnostic methods, based on the dynamics of structure with additional mass.
4.2. Inspection using mechanical energy converting elements.
4.2.1. The mechanical energy conversion into electricity model.
4.2.2. Practical aspect of application and new devices.
4.3. Some aspects of vibration and impact analysis in systems diagnostics.
4.3.1. Evaluation of quality of heterogeneous mechanical systems using impedance method.
4.3.2. Vibro shock signals in rotating system
4.3.3. Simulation of vibro shock signals in rotating system.
4.4. Multi-layer cylindrical structures diagnostics based on Lamb’s wave’s interference.
4.4.1. Waves propagating within the cylindrical structure and interference phenomenon.
4.4.2. A technique of signal processing for interferometric estimation of the amount of deposit in pipes
4.5. Acoustic emission (AE): research and new aspects.
4.5.1. AE method in the rotating machine elements.
4.5.2. AE testing of pressurized vessels and cylinders.
REFERENCES 4.
5. DEVELOPMENT AND APPLICATION OF MONITORING AND DIAGNOSTICS. Sec5
5.1. Permanent vibration monitoring and diagnostics of unique machines (UM).
5.1.1. Vibration monitoring and diagnostic systems of turboagregate.
5.1.2. Monitoring the technical condition of hydroelectric power plants.
5.1.3. Vibroacoustic diagnostics of rolling bearings using stationary system.
5.2. Periodic vibration diagnostics of rotor systems with portable devices.
5.3. Adaptable vibration monitoring in rotor systems.
5.3.1. Concept and principles of adaptive monitoring.
5.3.2. Realization of adaptive bearing defect detection.
5.3.3. Adaptive monitoring algorithm.
5.4. Vibrodiagnostics problem in small hydroelectric power plants (SHPP).
5.5. The concept of buildings stability monitoring and damage diagnostics.
5.5.1. Concept of building’s stability.
5.5.2. Models of building and defects.
5.5.3. Building’s stability monitoring system (BSMS).
5.5.4. Results of laboratory experiment and practices.
5.5.4.1. Analysis of frequencies of FE models and MA experiments.
5.5.4.2. STFT method for floor damage diagnostics.
5.5.4.3. Application of CWT to defect detection.
5.5.4.4. ANN application to defect detection.
5.5.4.5. Practical use of building monitoring concept.
5.6. Development of new measurement elements for vibration monitoring systems.
5.6.1. Low frequency vibration measurement device: creation and investigation.
5.6.2. Air gap measuring system for purpose of diagnostics and condition monitoring.
REFERENCES 5.
6. UNCERTAINTY IN MONITORING AND DIAGNOSTIC SYSTEMS. Sec6
6.1 Uncertainty in vibration monitoring systems of rotating machinery .
6.2. Uncertainty sources in vibration monitoring and diagnostic systems.
6.2.1. Calculating measurement uncertainty in vibromonitoring systems.
6.2.2. Increase of mean and variance estimates reliability for limited data size.
6.2.2.1. Theory of the method.
6.2.2.2. The results of statistical simulation.
6.2.2.3. Practical application of the method.
6.2.3. The measurement uncertainty with random or systematic errors.
6.2.3.1. Rotating machinery as a measurement object.
6.2.3.2. Vibromonitoring system as a measurement medium.
6.2.3.3. Analysis of experimental data.
6.2.4. Uncertainty of decision making.
6.3. Investigation of vibration monitoring uncertainty including transient modes of rotating systems.
REFERENCIES 6.
CONCLUSSION. Sec7