Diagnostika: Skirtumas tarp puslapio versijų

Iš Aktyvios pamokos.
Pereiti į navigaciją Jump to search
No edit summary
Žyma: Rankinis atšaukimas
No edit summary
 
(nerodoma 18 tarpinių versijų, sukurtų 3 naudotojų)
1 eilutė: 1 eilutė:
Vitalijus Volkovas
Čia pateikiama KTU profesoriaus Vitalijaus Volkovo paruošta monografija
  '''Diagnostics and Monitoring of Technical Systems:'''
  '''Diagnostics and Monitoring of Technical Systems:'''
  ''Methods and Application''
  ''Methods and Application''
  Kaunas, 2020
  Kaunas, 2021
TABLE OF CONTENTS<br>
 
INTRODUCTION <br>
Visą knygą atskirais skyriais pagal toliau pateiktą turinį galima atsisiųsti '''[https://ktuedu-my.sharepoint.com/:f:/g/personal/eimkarc_ktu_lt/Ev6sqUjOn5pKvByuf-ZPWssBsEGK8smv98nJADqAzs5qLg?e=owKeju čia]'''
'''1. PROBLEMS OF RELEVANCE.<br>'''
 
Autorius dirbo KTU Mechanikos fakulteto Mechanikos inžinerijos '''[https://midf.ktu.edu/mechanikos-inzinerijos-katedra/ katedroje]'''
 
Visuotinė lietuvių enciklopedija apie '''[https://www.vle.lt/straipsnis/vitalijus-volkovas/ autorių]'''
 
KTU bibliotekoje yra šios Vitalijaus Volkovo paruoštos '''[https://biblioteka.ktu.edu/galleries/volkovas/ knygos]'''
 
Informacija anglų kalba yra čia '''[[Diagnostics]]'''
 
***********************
'''TABLE OF CONTENTS. FOREWORD. INTRODUCTION. [https://ktuedu-my.sharepoint.com/:b:/g/personal/eimkarc_ktu_lt/Eco9LSrQe4tDrKE8d-l0RBYB3s6dYDR3uAkVK_q3Pz--7w?e=4gGqN3 Intro]'''<br>
'''1. PROBLEMS OF RELEVANCE. [https://ktuedu-my.sharepoint.com/:b:/g/personal/eimkarc_ktu_lt/EfHDazseMjtKrjIbbLUBSmMBB4GQYzUjdsW5eGeZMD1ZFg?e=gABDck Sec1]'''<br>
1.1. Energy and concentration of power, failures and mistakes – reasons of the potential accidents.<br>
1.1. Energy and concentration of power, failures and mistakes – reasons of the potential accidents.<br>
1.2. Industrial facilities and product safety, quality requirements.<br>
1.2. Industrial facilities and product safety, quality requirements.<br>
1.3. The methodology of evaluation of system’s technical state.<br>
1.3. The methodology of evaluation of system’s technical state.<br>
1.4. System monitoring and diagnostics symbiosis.<br>
1.4. System monitoring and diagnostics symbiosis.<br>
REFERENCES<br>
REFERENCES 1.<br>
'''2. MODELS OF DAMAGED MECHANICAL SYSTEMS.<br>'''
'''2. MODELS OF DAMAGED MECHANICAL SYSTEMS. [https://ktuedu-my.sharepoint.com/:b:/g/personal/eimkarc_ktu_lt/Ec6oS_nrp5NFvAJbFT0Irx0BRS050r_qeqSPO1fDhGfuSA?e=D6B7SL Sec2]'''<br>
2.1. Technological system decomposition into elements and analysis of defective states <br>
2.1. Technological system decomposition into elements and analysis of defective states.<br>
2.2. Models of technical system structural elements. <br>
2.2. Models of technical system structural elements.<br>
2.2.1. Linear dynamics challenges<br>
2.2.1. Linear dynamics challenges.<br>
2.2.2. Nonlinear dynamics challenges<br>
2.2.2. Nonlinear dynamics challenges.<br>
2.3. Model of damaged structure’s parameters changing.<br>
2.3. Model of damaged structure’s parameters changing.<br>
REFERENCES<br>
REFERENCES 2.<br>
'''3. DYNAMICS AND STATE IDENTIFICATION OF HETEROGENEOUS SYSTEMS<br>'''
'''3. DYNAMICS AND STATE IDENTIFICATION OF HETEROGENEOUS SYSTEMS. [https://ktuedu-my.sharepoint.com/:b:/g/personal/eimkarc_ktu_lt/ESxj2nShbdhMns8nbF82hRoBirxOesfnJ4Nq0e6G7HP1Xg?e=MzPgIq Sec3]<br>'''
3.1. Systems with lumped parameters .<br>
3.1. Systems with lumped parameters.<br>
3.2 Systems with distributed parameters.<br>
3.2 Systems with distributed parameters.<br>
3.2.1. The transfer function dentification<br>
3.2.1. The transfer function identification.<br>
3.2.2. Dynamics of oblong constructive element and defect identification<br>
3.2.2. Dynamics of oblong constructive element and defect identification.<br>
3.2.3. Defect identification in the axis - symmetrical constructive elements.<br>
3.2.3. Defect identification in the axis - symmetrical constructive elements.<br>
3.2.3.1. FEM analysis and state parameters identification.<br>
3.2.3.1. FEM analysis and state parameters identification.<br>
3.2.3.2. Reaction of the mechanical system to impact load and state determination.<br>
3.2.3.2. Reaction of the mechanical system to impact load and state determination.<br>
3.2.4. Dynamics and identification of flexible constructive elements.<br>
3.2.4. Dynamics and identification of flexible constructive elements.<br>
3.2.4.1. Model of transverse oscillations of a defective belt free span between pulleys<br>
3.2.4.1. Model of transverse oscillations of a defective belt free span between pulleys.<br>
3.2.4.2. FEM analysis of the defective belt interaction with the pulley<br>
3.2.4.2. FEM analysis of the defective belt interaction with the pulley.<br>
3.2.4.3. A method of belt drives malfunction diagnosis.<br>
3.2.4.3. A method of belt drives malfunction diagnosis.<br>
3.2.4.4. Procedure of measuring<br>
3.2.4.4. Procedure of measuring.<br>
3.3. Damaged system’s quazi-harmonic process model<br>
3.3. Damaged system’s quazi-harmonic process model.<br>
REFERENCES<br>
REFERENCES 3.<br>
'''4. THEORY OF MODERN DIAGNOSTIC METHODS AND MEANS <br>'''
'''4. THEORY OF MODERN DIAGNOSTIC METHODS AND MEANS. [https://ktuedu-my.sharepoint.com/:b:/g/personal/eimkarc_ktu_lt/ET_kKJVqltJImX5DWHlz2PABHxmgcziASukw0uZUZomWrw?e=M6zC2p Sec4]<br>'''
4.1. Controlled dynamic elements in structure’s diagnostics<br>
4.1. Controlled dynamic elements in structure’s diagnostics.<br>
4.1.1. The qualitative estimation of defectness of the beam type structures.<br>
4.1.1. The qualitative estimation of defectness of the beam type structures.<br>
4.1.2. Experimental investigation of the technical state change and defect localization in beam type structures<br>
4.1.2. Experimental investigation of the technical state change and defect localization in beam type structures.<br>
4.1.3. The diagnostic methods, based on the dynamics of structure with additional mass.<br>
4.1.3. The diagnostic methods, based on the dynamics of structure with additional mass.<br>
4.2. Inspection using mechanical energy converting elements <br>
4.2. Inspection using mechanical energy converting elements.<br>
4.2.1. The mechanical energy conversion into electricity model<br>
4.2.1. The mechanical energy conversion into electricity model.<br>
4.2.2. Practical aspect of application and new devices<br>
4.2.2. Practical aspect of application and new devices.<br>
4.3. Some aspects of vibration and impact analysis in systems diagnostics <br>
4.3. Some aspects of vibration and impact analysis in systems diagnostics.<br>
4.3.1. Evaluation of quality of heterogeneous mechanical systems using impedance method.<br>
4.3.1. Evaluation of quality of heterogeneous mechanical systems using impedance method.<br>
4.4.2. Vibro shock signals in rotating system<br>
4.3.2. Vibro shock signals in rotating system<br>
4.4.3. Simulation of vibro shock signals in rotating system.<br>
4.3.3. Simulation of vibro shock signals in rotating system.<br>
4.4. Multi-layer cylindrical structures diagnostics based on Lamb’s wave’s interference.<br>
4.4. Multi-layer cylindrical structures diagnostics based on Lamb’s wave’s interference.<br>
4.4.1. Waves propagating within the cylindrical structure and interference phenomenon<br>
4.4.1. Waves propagating within the cylindrical structure and interference phenomenon.<br>
4.4.2. A technique of signal processing for interferometric estimation of the amount of deposit in pipes<br>
4.4.2. A technique of signal processing for interferometric estimation of the amount of deposit in pipes<br>
4.5. Acoustic emission (AE): research and new aspects.<br>
4.5. Acoustic emission (AE): research and new aspects.<br>
4.5.1. AE method in the rotating machine elements<br>
4.5.1. AE method in the rotating machine elements.<br>
4.5.2. AE testing of pressurized vessels and cylinders<br>
4.5.2. AE testing of pressurized vessels and cylinders.<br>
REFERENCES<br>
REFERENCES 4.<br>
'''5. DEVELOPMENT AND APPLICATION OF MONITORING AND DIAGNOSTICS<br>'''
'''5. DEVELOPMENT AND APPLICATION OF MONITORING AND DIAGNOSTICS. [https://ktuedu-my.sharepoint.com/:b:/g/personal/eimkarc_ktu_lt/EcLSNs9YDsFBjpevBB5b6fEBgwJEYWJGYB6NU-OXwseOxQ?e=LRscys Sec5]<br>'''
5.1. Permanent vibration monitoring and diagnostics of unique machines (UM)<br>
5.1. Permanent vibration monitoring and diagnostics of unique machines (UM).<br>
5.1.1. Vibration monitoring and diagnostic systems of turboagregate<br>
5.1.1. Vibration monitoring and diagnostic systems of turboagregate.<br>
5.1.2. Monitoring the technical condition of hydroelectric power plants<br>
5.1.2. Monitoring the technical condition of hydroelectric power plants.<br>
5.1.3. Vibroacoustic diagnostics of rolling bearings using stationary system<br>
5.1.3. Vibroacoustic diagnostics of rolling bearings using stationary system.<br>
5.2. Periodic vibration diagnostics of rotor systems with portable devices .<br>
5.2. Periodic vibration diagnostics of rotor systems with portable devices.<br>
5.3. Adaptable vibration monitoring in rotor systems <br>
5.3. Adaptable vibration monitoring in rotor systems.<br>
5.3.1. Concept and principles of adaptive monitoring.<br>
5.3.1. Concept and principles of adaptive monitoring.<br>
5.3.2. Realization of adaptive bearing defect detection<br>
5.3.2. Realization of adaptive bearing defect detection.<br>
5.3.3. Adaptive monitoring algorithm<br>
5.3.3. Adaptive monitoring algorithm.<br>
5.5. Vibrodiagnostics problem in small hydroelectric power plants (SHPP)<br>
5.4. Vibrodiagnostics problem in small hydroelectric power plants (SHPP).<br>
5.5. The concept of buildings stability monitoring and damage diagnostics<br>
5.5. The concept of buildings stability monitoring and damage diagnostics.<br>
5.5.1. Concept of building’s stability.<br>
5.5.1. Concept of building’s stability.<br>
5.5.2. Models of building and defects.<br>
5.5.2. Models of building and defects.<br>
5.5.3. Building’s stability monitoring system (BSMS)<br>
5.5.3. Building’s stability monitoring system (BSMS).<br>
5.5.4. Results of laboratory experiment.<br>
5.5.4. Results of laboratory experiment and practices.<br>
5.5.4.1. Analysis of frequencies of FE models and MA experiments.<br>
5.5.4.2. STFT method for floor damage diagnostics.<br>
5.5.4.3. Application of CWT to defect detection.<br>
5.5.4.4. ANN application to defect detection.<br>
5.5.4.5. Practical use of building monitoring concept.<br>  
5.6. Development of new measurement elements for vibration monitoring systems.<br>
5.6. Development of new measurement elements for vibration monitoring systems.<br>
5.6.1. Low frequency vibration measurement device: creation and investigation<br>
5.6.1. Low frequency vibration measurement device: creation and investigation.<br>
5.6.2. Air gap measuring system for purpose of diagnostics and condition monitoring.<br>
5.6.2. Air gap measuring system for purpose of diagnostics and condition monitoring.<br>
REFERENCES<br>
REFERENCES 5.<br>
'''6. UNCERTAINTY IN MONITORING AND DIAGNOSTIC SYSTEMS.<br>'''
'''6. UNCERTAINTY IN MONITORING AND DIAGNOSTIC SYSTEMS. [https://ktuedu-my.sharepoint.com/:b:/g/personal/eimkarc_ktu_lt/ESPRaql5rJNKkHH-s9CQX3sBNhS6g60g53vVknmEPEyfyQ?e=aPGMzC Sec6]<br>'''
6.1 Uncertainty in vibration monitoring systems of rotating machinery .<br>
6.1 Uncertainty in vibration monitoring systems of rotating machinery .<br>
6.2. Uncertainty sources in vibration monitoring and diagnostic systems<br>
6.2. Uncertainty sources in vibration monitoring and diagnostic systems.<br>
6.2.1. Calculating measurement uncertainty in vibromonitoring systems<br>
6.2.1. Calculating measurement uncertainty in vibromonitoring systems.<br>
6.2.2. Increase of mean and variance estimates reliability for limited data size.<br>
6.2.2. Increase of mean and variance estimates reliability for limited data size.<br>
6.2.2.1. Theory of the method<br>
6.2.2.1. Theory of the method.<br>
6.2.2.2. The results of statistical simulation<br>
6.2.2.2. The results of statistical simulation.<br>
6.2.2.3. Practical application of the method<br>
6.2.2.3. Practical application of the method.<br>
6.2.3. The measurement uncertainty with random or systematic errors<br>
6.2.3. The measurement uncertainty with random or systematic errors.<br>
6.2.3.1. Rotating machinery as a measurement object<br>
6.2.3.1. Rotating machinery as a measurement object.<br>
6.2.3.2. Vibromonitoring system as a measurement medium.<br>
6.2.3.2. Vibromonitoring system as a measurement medium.<br>
6.2.3.3. Analysis of experimental data<br>
6.2.3.3. Analysis of experimental data.<br>
6.2.4. Uncertainty of decision making.<br>
6.2.4. Uncertainty of decision making.<br>
6.3. Investigation of vibration monitoring uncertainty including transient modes of rotating systems<br>
6.3. Investigation of vibration monitoring uncertainty including transient modes of rotating systems.<br>
REFERENCIES<br>
REFERENCIES 6.<br>
'''CONCLUSSION. [https://ktuedu-my.sharepoint.com/:b:/g/personal/eimkarc_ktu_lt/EePDWDNtX9ZOmAzEJDlR22ABgw0g8oh2x89wJEVnsBxPfA?e=uln5DD Sec7]'''

Dabartinė 17:57, 18 balandžio 2023 versija

Čia pateikiama KTU profesoriaus Vitalijaus Volkovo paruošta monografija

Diagnostics and Monitoring of Technical Systems:
Methods and Application
Kaunas, 2021

Visą knygą atskirais skyriais pagal toliau pateiktą turinį galima atsisiųsti čia

Autorius dirbo KTU Mechanikos fakulteto Mechanikos inžinerijos katedroje

Visuotinė lietuvių enciklopedija apie autorių

KTU bibliotekoje yra šios Vitalijaus Volkovo paruoštos knygos

Informacija anglų kalba yra čia Diagnostics

TABLE OF CONTENTS. FOREWORD. INTRODUCTION. Intro
1. PROBLEMS OF RELEVANCE. Sec1
1.1. Energy and concentration of power, failures and mistakes – reasons of the potential accidents.
1.2. Industrial facilities and product safety, quality requirements.
1.3. The methodology of evaluation of system’s technical state.
1.4. System monitoring and diagnostics symbiosis.
REFERENCES 1.
2. MODELS OF DAMAGED MECHANICAL SYSTEMS. Sec2
2.1. Technological system decomposition into elements and analysis of defective states.
2.2. Models of technical system structural elements.
2.2.1. Linear dynamics challenges.
2.2.2. Nonlinear dynamics challenges.
2.3. Model of damaged structure’s parameters changing.
REFERENCES 2.
3. DYNAMICS AND STATE IDENTIFICATION OF HETEROGENEOUS SYSTEMS. Sec3
3.1. Systems with lumped parameters.
3.2 Systems with distributed parameters.
3.2.1. The transfer function identification.
3.2.2. Dynamics of oblong constructive element and defect identification.
3.2.3. Defect identification in the axis - symmetrical constructive elements.
3.2.3.1. FEM analysis and state parameters identification.
3.2.3.2. Reaction of the mechanical system to impact load and state determination.
3.2.4. Dynamics and identification of flexible constructive elements.
3.2.4.1. Model of transverse oscillations of a defective belt free span between pulleys.
3.2.4.2. FEM analysis of the defective belt interaction with the pulley.
3.2.4.3. A method of belt drives malfunction diagnosis.
3.2.4.4. Procedure of measuring.
3.3. Damaged system’s quazi-harmonic process model.
REFERENCES 3.
4. THEORY OF MODERN DIAGNOSTIC METHODS AND MEANS. Sec4
4.1. Controlled dynamic elements in structure’s diagnostics.
4.1.1. The qualitative estimation of defectness of the beam type structures.
4.1.2. Experimental investigation of the technical state change and defect localization in beam type structures.
4.1.3. The diagnostic methods, based on the dynamics of structure with additional mass.
4.2. Inspection using mechanical energy converting elements.
4.2.1. The mechanical energy conversion into electricity model.
4.2.2. Practical aspect of application and new devices.
4.3. Some aspects of vibration and impact analysis in systems diagnostics.
4.3.1. Evaluation of quality of heterogeneous mechanical systems using impedance method.
4.3.2. Vibro shock signals in rotating system
4.3.3. Simulation of vibro shock signals in rotating system.
4.4. Multi-layer cylindrical structures diagnostics based on Lamb’s wave’s interference.
4.4.1. Waves propagating within the cylindrical structure and interference phenomenon.
4.4.2. A technique of signal processing for interferometric estimation of the amount of deposit in pipes
4.5. Acoustic emission (AE): research and new aspects.
4.5.1. AE method in the rotating machine elements.
4.5.2. AE testing of pressurized vessels and cylinders.
REFERENCES 4.
5. DEVELOPMENT AND APPLICATION OF MONITORING AND DIAGNOSTICS. Sec5
5.1. Permanent vibration monitoring and diagnostics of unique machines (UM).
5.1.1. Vibration monitoring and diagnostic systems of turboagregate.
5.1.2. Monitoring the technical condition of hydroelectric power plants.
5.1.3. Vibroacoustic diagnostics of rolling bearings using stationary system.
5.2. Periodic vibration diagnostics of rotor systems with portable devices.
5.3. Adaptable vibration monitoring in rotor systems.
5.3.1. Concept and principles of adaptive monitoring.
5.3.2. Realization of adaptive bearing defect detection.
5.3.3. Adaptive monitoring algorithm.
5.4. Vibrodiagnostics problem in small hydroelectric power plants (SHPP).
5.5. The concept of buildings stability monitoring and damage diagnostics.
5.5.1. Concept of building’s stability.
5.5.2. Models of building and defects.
5.5.3. Building’s stability monitoring system (BSMS).
5.5.4. Results of laboratory experiment and practices.
5.5.4.1. Analysis of frequencies of FE models and MA experiments.
5.5.4.2. STFT method for floor damage diagnostics.
5.5.4.3. Application of CWT to defect detection.
5.5.4.4. ANN application to defect detection.
5.5.4.5. Practical use of building monitoring concept.
5.6. Development of new measurement elements for vibration monitoring systems.
5.6.1. Low frequency vibration measurement device: creation and investigation.
5.6.2. Air gap measuring system for purpose of diagnostics and condition monitoring.
REFERENCES 5.
6. UNCERTAINTY IN MONITORING AND DIAGNOSTIC SYSTEMS. Sec6
6.1 Uncertainty in vibration monitoring systems of rotating machinery .
6.2. Uncertainty sources in vibration monitoring and diagnostic systems.
6.2.1. Calculating measurement uncertainty in vibromonitoring systems.
6.2.2. Increase of mean and variance estimates reliability for limited data size.
6.2.2.1. Theory of the method.
6.2.2.2. The results of statistical simulation.
6.2.2.3. Practical application of the method.
6.2.3. The measurement uncertainty with random or systematic errors.
6.2.3.1. Rotating machinery as a measurement object.
6.2.3.2. Vibromonitoring system as a measurement medium.
6.2.3.3. Analysis of experimental data.
6.2.4. Uncertainty of decision making.
6.3. Investigation of vibration monitoring uncertainty including transient modes of rotating systems.
REFERENCIES 6.
CONCLUSSION. Sec7